رفتن به مطلب
مرجع رسمی سی‌پلاس‌پلاس ایران

پرچمداران

  1. قاسم رمضانی منش

    قاسم رمضانی منش

    مدیران مرجع


    • امتیاز

      2

    • تعداد ارسال ها

      97


  2. Max Base

    Max Base

    اساتید


    • امتیاز

      1

    • تعداد ارسال ها

      8


  3. cdefender

    cdefender

    اساتید


    • امتیاز

      1

    • تعداد ارسال ها

      4



مطالب محبوب

در حال نمایش مطالب دارای بیشترین امتیاز در دوشنبه, 14 بهمن 1398 در نوشته‌های وبلاگ

  1. 1 امتیاز
    هنگامیکه شما برای اولین بار از C به CPP مهاجرت می کنید، یا اصلا برنامه نویسی را قصد دارید با CPP شروع کنید، با مفاهیم متعددی روبرو خواهید شد که شاید برای شما جالب باشند که بدانید، این ایده ها چطور شکل گرفتند، چطور به CPP افزوده شدند و اهمیت آن ها در عمل (هنگام برنامه نویسی و توسعه نرم افزار) چیست. در این پست وبلاگی IOStream، به این خواهیم پرداخت که ایده Overloading و Template و Auto Deduction چطور از CPP سر در آوردند. همانطور که شما ممکن است تجربه کرده باشید، هنگامیکه برنامه نویسی و توسعه نرم افزاری را با C شروع می کنید، برنامه شما چیزی بیش از یک مجموعه بی انتها از توابع و استراکچرها و متغیرها و اشاره گرها و ... نخواهند بود. از همین روی شما مجبور هستید مبتنی بر ایده مهندسی نرم افزار و پارادیم برنامه نویسی ساخت یافته، برای هر کاری یک تابع منحصربفرد پیاده سازی کنید. این تابع باید از هر لحاظی از قبیل نام، نوع ورودی ها، نوع خروجی و حتی نوع عملکرد منحصربفرد باشد تا بتواند یک کار را به شکل صحیح کنترل کند که همین مسئله می تواند در پیاده سازی برخی نرم افزارها، انسان را در جهنم داغ و سوزان قرار بدهد. مثلا پیاده سازی یک برنامه محاسباتی مانند ماشین حساب که ممکن است با انواع داده های محاسباتی مانند عدد صحیح (Integer) و عدد اعشاری (Float) رو به رو شود. از همین روی فرض کنید، ما قرار است یک عمل محاسباتی مانند جمع از برنامه ماشین حساب را پیاده سازی کنیم. برای اینکه برنامه به شکل صحیحی کار کند، باید عمل جمع یا همان Add برای انواع داده های موجود از قبیل عدد صحیح و اعشاری پیاده سازی شود. اگر شما این کار را انجام ندهید، برنامه شما به شکل صحیحی کار نخواهد کرد (یعنی نتایج اشتباه ممکن است برای ما تولید کند). در تصویر زیر، نمونه این برنامه و توابع مرتبط با آن پیاده سازی شده است: #include <stdio.h> int AddInt(int arg_a, int arg_b) { return arg_a + arg_b; } float AddFloat(float arg_a, float arg_b) { return arg_a + arg_b; } double AddDouble(double arg_a, double arg_b) { return arg_a + arg_b; } int main(int argc, const char* argv[]) { int result_int = AddInt(1, 2); float result_float = AddFloat(10.02f, 21.23f); double result_double = AddDouble(9.0, 24.3); printf("Result Integer: %d", result_int); printf("Result Float: %f", result_float); printf("Result Double: %lf", result_double); return 0; } به برنامه بالا دقت کنید. ما سه تا تابع Add با نام های منحصربفرد داریم که سه نوع داده مجزا را به عنوان ورودی دریافت می کنند، سه نوع نتیجه مجزا بازگشت می دهند، اگرچه پیاده سازی آن ها کاملا مشابه هم دیگر است و تفاوتی در پیاده سازی این سه تابع وجود ندارد. ولی به هر صورت، اگر به خروجی دیزاسمبلی برنامه مشاهده کنید، دلیل این مسئله را متوجه خواهید شد که چرا هنگام برنامه نویسی با زبان C، به نام های منحصربفرد نیاز است، چون اگر توابع نام های مشابه با هم داشته باشند، لینکر نمی تواند به دلیل تداخل نام (Name Conflict)، آدرس آن ها را محاسبه یا اصطلاحا Resolve کند. همانطور که در تصویر بالا خروجی دیزاسمبلی برنامه Add را مشاهده می کنید، اگر توابع نام مشابه داشتند، در هنگام فراخوانی (Call) تابع Add تداخل رخ می داد، چون دینامیک لودر سیستم عامل دقیقا نمی داند که کدام تابع را باید فراخوانی کند. برای همین نیاز است وقتی برنامه نوشته می شود، نام توابع در سطح کدهای اسمبلی و ماشین منحصر بفرد باشد. به هر صورت، به نظر شما آیا راهی وجود دارد که ما پیاده سازی این نوع توابع را ساده تر کنیم یا حداقل بار نامگذاری آن ها را از روی دوش توسعه دهنده و برنامه نویس برداریم؟ بله امکان این کار وجود دارد. مهندسان CPP با افزودن ویژگی Overloading و Name Mangling یا همان بحث Decoration مشکل برنامه نویسان در پیاده سازی توابع با نام های منحصربفرد را حل کردند (البته کاربردهای دیگر هم دارد که فعلا برای بحث ما اهمیت ندارند). ویژگی اورلودینگ در CPP به ما اجازه خواهد داد یک تابع با عنوان Add پیاده سازی کنیم که تفاوت آن ها فقط در نوع ورودی و نوع خروجی است. به عنوان مثال، در قسمت زیر، کد برنامه Add را مشاهده می کنید که با قواعد CPP بازنویسی شده است. #include <iostream> int Add(int arg_a, int arg_b) { return arg_a + arg_b; } float Add(float arg_a, float arg_b) { return arg_a + arg_b; } double Add(double arg_a, double arg_b) { return arg_a + arg_b; } int main(int argc, const char* argv[]) { int result_int = Add(1, 2); float result_float = Add(10.02f, 21.23f); double result_double = Add(9.0, 24.3); std::cout << "Result Integer: " << result_int << std::endl; std::cout << "Result Float: " << result_float << std::endl; std::cout << "Result Double: " << result_double << std::endl; return 0; } همانطور که مشاهده می کنید، ما اکنون سه تابع با نام Add داریم. ولی شاید سوال پرسیده شود که چطور لینکر متوجه تفاوت این توابع با یکدیگر می شود درحالیکه هر سه دارای یک نام واحد هستند. اینجاست که مسئله Name Mangling یا همان Decoration نام آبجکت ها در CPP مطرح می شود. اگر شما برنامه مذکور را دیزاسمبل کنید، متوجه تفاوت کد منبع (Source-code) و کد ماشین/اسمبلی (Machine/Assembly-code) خواهید شد. همانطور که در خروجی دیزاسمبلی برنامه اکنون مشاهده می کنید، توابع اگرچه در سطح کد منبع دارای نام مشابه با یکدیگر بودند، اما بعد کامپایل نام آن ها به شکل بالا تبدیل می شود. به این شیوه نام گذاری Name Mangling یا Decoration گویند که قواعد خاصی در هر کامپایلر برای آن وجود دارد. این ویژگی موجب می شود در ادامه لینکر بتواند تمیز بین انواع توابع Add شود. به عنوان مثال، تابع نامگذاری شده با عنوان j__?Add@YAHH@Z تابعی است که به نوعی از تابع Add اشاره دارد که ورودی هایی از نوع عدد صحیح دریافت می کند. این شیوه نامگذاری خلاصه موجب خواهد شد لینکر بتواند به سادگی بین توابع تمایز قائل شود. با این حال هنوز یک مشکل باقی است، و آن هم تکرار مجدد یک پیاده سازی برای هر تابع است. به نظر شما آیا راهی وجود دارد که ما از پیاده سازی مجدد توابعی که ساختار مشابه برای انواع ورودی ها دارند، جلوگیری کنیم؟ باید بگوییم، بله. این امکان برای شما به عنوان توسعه دهنده CPP در نظر گرفته شده است. ویژگی که اکنون به عنوان Templateها در مباحث Metaprogramming یا Generic Programming استفاده می شود، ایجاد شده است تا این مشکل را اساساً برای ما رفع کند. با استفاده از این ویژگی کافی است، طرح یا الگوی یک تابع را پیاده سازی کنید، تا در ادامه خود کامپایلر مبتنی بر ورودی هایی که به الگو عبور می دهید، در Backend، یک نمونه تابع Overload شده مبتنی بر آن الگو برای نوع داده شما ایجاد کند. #include <iostream> template <typename Type> Type Add(Type arg_a, Type arg_b) { return arg_a + arg_b; } int main(int argc, const char* argv[]) { int result_int = Add(1, 2); float result_float = Add(10.02f, 21.23f); double result_double = Add(9.0, 24.3); std::cout << "Result Integer: " << result_int << std::endl; std::cout << "Result Float: " << result_float << std::endl; std::cout << "Result Double: " << result_double << std::endl; return 0; } به عنوان مثال، در بالا تابع Add را مشاهده می کنید که نوع داده ورودی این تابع و حتی نوع خروجی آن مشخص نشده است و در قالب Typename به کامپایلر معرفی شده است. این یک الگو برای تابع Add است. کامپایلر اکنون می تواند مبتنی بر ورودی هایی که به تابع هنگام فراخوانی یا اصطلاحا Initialization عبور می دهیم، یک نمونه تابع Overload شده از آن الگو ایجاد کند و در ادامه آن را برای استفاده در محیط Runtime فراخوانی کند. حال اگر برنامه بالا را دیزاسمبل کنید، مشاهده خواهید کرد که کامپایلر از همان قاعده Overloading استفاده کرده است تا نمونه ای از تابع Add متناسب با نوع ورودی هایش ایجاد کند. هنوز می توان برنامه نویسی با CPP را جذاب تر و البته ساده تر کرد، اما چطور؟ همانطور که در قطعه کد بالا مشاهده می کنید، هنوز ما باید خود تشخیص دهیم که نوع خروجی تابع قرار است به چه شکل باشد. این مورد خیلی مواقع مشکل ساز خواهد بود. برای حل این مسئله، در CPP مبحثی در نظر گرفته شده است که آن را به عنوان Auto Deduction می شناسیم که سطح هوشمندی کامپایلر CPP را بالاتر می برد. در این ویژگی خود کامپایلر است که مشخص می کند نوع یک متغیر مبتنی بر خروجی که به آن تخصیص داده می شود، چیست. به عنوان مثال، شما می توانید برنامه بالا را به شکل زیر بازنویسی کنید: #include <iostream> template <typename Type> auto Add(Type arg_a, Type arg_b) { return arg_a + arg_b; } int main(int argc, const char* argv[]) { auto result_int = Add(1, 2); auto result_float = Add(10.02f, 21.23f); auto result_double = Add(9.0, 24.3); std::cout << "Result Integer: " << result_int << std::endl; std::cout << "Result Float: " << result_float << std::endl; std::cout << "Result Double: " << result_double << std::endl; return 0; } با استفاده از ویژگی Auto Deduction و کلیدواژه Auto در برنامه، خود کامپایلر در ادامه مشخص خواهد کرد که تابع Add چه نوع خروجی دارد و همچنین نوع متغیرها برای ذخیره سازی خروجی Add چه باید باشد. به عبارتی اکنون تابع Add هم Value و هم Data type را مشخص می کند که این موجب می شود برنامه نویسی با CPP خیلی ساده تر از گذشته شود. حال اگر به نمونه برنامه آخر نگاه کنید و آن را با نمونه C مقایسه کنید، متوجه خواهید شد که CPP چقدر کار را برای ما ساده تر کرده است. در این پست به هر صورت، قصد داشتم به شما نشان دهم که نحوه تحول CPP به صورت گام به گام چطور بوده است و البته اینکه پشت هر ویژگی در CPP چه منطق کلی وجود دارد. امیدوارم این مقاله برای شما مفید بوده باشد. نمونه انگلیسی این مقاله را می توانید در این آدرس (لینک) مطالعه کنید. میلاد کهساری الهادی
  2. 1 امتیاز
    با سلام وقت بخیر, در این مطلب میخواهیم در مورد روش کارکرد پیام رسان ها بیشتر بدانیم و با یکدیگر کد یک پیام رسان ساده را پیاده و بررسی کنیم. طرز کار کرد پیام رسان در نظر داشته باشید که هر پیام رسانی که بر ساختار ها پیاده شده باشد از دو قسمت تشکیل شده است. نرم افزار اصلی برای مدیریت درخواست ها (سرور) نرم افزار برای کاربران (کاربر) به نرم افزار اولی سمت SERVER خواهیم گفت و به بعدی سمت CLIENT خواهیم گفت. روم یا تالار گفتگو ما تنها یک اتاق برای گفتگو در نظر میگیریم و هر کاربری که به سرور متصل شود را در همان تالار اضافه خواهیم کرد. تالار های گفتگو صرفا برای تقکیک سازی ارسال و دریافت ها و محدود کردن بازه ی کاربران مورد نظر... (ممکن است یک کاربر در چند اتاق بطور همزمان باشد.) سیستم های پیام رسان پیشرفته تر مانند تلگرام و ... تالار های زیادی را شامل می شوند. (هر کاربر خودش در کانال و گروه های مختلفی عضو است که هر کدام از آنها یک کانال متفاوت محسوب می شوند.) * دقت شود که منظور از کانال صرفا یک اتاق یا تالار گفتگو است و منظور کانال ارتباطی و پروتکل نیست. نرم افزار اصلی نرم افزار اصلی وظیفه دارد تا تمام کاربرانی که وارد تالار شده اند را به یاد داشته باشد و هر لحظه اماده دریافت درخواست هایی از طرف کاربرانش باشد. و پیام هایی را که از کاربران دریافت می کند برای تمامی کاربران دیگر هم ارسال کند که بسته به خلاقیت و نیاز می تواند هر یک از این بخش ها متفاوت طراحی شود. نرم افزار اصلی باید از قبل اجرا شده باشد. تا کاربران دیگر با استفاده از نرم افزار مخصوص به خودشان بتوانند به سرور متصل شوند و ارسال و دریافت داشته باشند. در نظر داشته باشید که اگر در نرم افزار اصلی اختلالی پیش بیایید و متوقف بشوند. قطا برای تمام کاربران مشکل پیش می آید. مگر اینکه از پایگاه های داده ی داخلی استفاده کرده باشند. (با خلاقیت می توان به گونه های متفاوتی چنین ساختاری را پیاده کرد) نرم افزار کاربران این نرم افزار جذاب ترین بخش است چرا تمام قابلیت هایی را که در اختیار کاربر قرار می دهیم را مستقیما طراحی می کنیم. در نظر داشته باشید که هر چیزی که در این نرم افزار طراحی می شود باید در نرم افزار اصلی پشتیبانی شوند... بنابراین اگر این دو بخش توسط دو فرد یا دو گروه مجزا طراحی می شوند آنها باید توسط داکیومنت ها و جلساتی به نظرات مشابه ای رسیده باشند. (اگرچه اینها تخصص و وظیفه ی تحلیلگر سیستم است! نه بطور همزمان وظیفه توسعه دهنده و برنامه نویس نرم افزار) پیاده سازی یک نمونه اکنون در نظر داریم تا با استفاده از ساختار کتابخانه BoostAsio پروژه ای را با نام BoostAsioChat ایجاد کنیم که در آن می خواهیم یک پیام رسان با حداقل ترین امکانات پایه طراحی کنیم که بیشتر جنبه شخصی و تفریحی دارد. زیرا از ساختار های استاندارد و ایمن و کاربری کاملا بدور است! (می توانید خودتان توسعه دهید و آنرا جالب تر بسازید) ساختار نرم افزار اصلی و سرور را به این صورت تعریف می کنیم : typedef deque<message> messageQueue; class participant { public: virtual ~participant() {} virtual void deliver(const message& messageItem) = 0; }; typedef shared_ptr<participant> participantPointer; class room { public: void join(participantPointer participant); void deliver(const message& messageItem); void leave(participantPointer participant); private: messageQueue messageRecents; enum { max = 200 }; set<participantPointer> participants; }; class session : public participant, public enable_shared_from_this<session> { public: session(tcp::socket socket, room& room) : socket(move(socket)), room_(room); void start(); void deliver(const message& messageItem); private: void readHeader(); void readBody(); void write(); tcp::socket socket; room& room_; message messageItem; messageQueue Messages; }; class server { public: server(boost::asio::io_context& io_context, const tcp::endpoint& endpoint) : acceptor(io_context, endpoint); private: void do_accept(); tcp::acceptor acceptor; room room_; }; int main(int argc, char* argv[]); ساختار نرم افزار کاربر را هم به این صورت تعریف می کنیم : typedef deque<message> messageQueue; class client { public: client(boost::asio::io_context& context, const tcp::resolver::results_type& endpoints) : context(context), socket(context); void write(const message& messageItem); void close(); private: void connect(const tcp::resolver::results_type& endpoints); void readHeader(); void readBody(); void write(); boost::asio::io_context& context; tcp::socket socket; message readMessage; messageQueue writeMessage; }; int main(int argc, char* argv[]); در نظر داریم تا در این پروژه از thread ها نیز استفاده کنیم... در مورد این مفهوم ها می توانید بصورت مجزا تحقیق کنید. بنابراین روش کامپایل این پروژه به این صورت خواهد بود : $ g++ client.cpp -lpthread -o client $ g++ Server.cpp -lpthread -o server آزمایش همانطور که گفته شد در ابتدا نرم افزار اصلی و سرور باید اجرا شود. در اینجا ما تمام ارتباطات شبکه را بر روی یک سیستم در شبکه داخلی برقرار خواهیم کرد... پس نگرانی در مورد ساختار های درونی شبکه و آی پی / دی ان اس / دامین نخواهیم داشت. بنابراین ای پی را می توانید ای پی داخلی یا localhost در نظر بگیرید. برای آزمایش پورت فرضی 4000 را در نظر میگیریم و نرم افزار اصلی را روی این پورت اجرا میکنیم : $ ./server 4000 در این مرحله متوجه می شوید که نرم افزار اصلی با موفقیت اجرا شده است و همچنان اجرا مانده است. بله درست است... نرم افزار اصلی هر لحظه باید منتظر دستور کاربران باشد. اگر لحظه ای برای نرم افزار اصلی اختلالی پیش آید نخواهد توانست دستورات کاربران را انجام یا پاسخ دهد. بنابراین این پردازش را قطع نکنید و اجازه دهید تا نرم افزار اصلی اجرا بماند. در محیط دیگری نرم افزار سمت کاربر را نیز اجرا کنید. این نرم افزار را می توانید به تعداد دلخواه وارد کنید. (همانطور که ممکن است 6 نفر همزمان به سرور متصل باشند / یا ممکن است هیچ فردی به سرور متصل نشوند) ابتدا یک کاربری را به سرور با پورت 4000 و شبکه داخلی وصل می کنیم : $ ./client localhost 4000 first user: you can type message here... حال در محیط دیگری با کاربر جدیدی نیز وارد می شویم : $ ./client localhost 4000 second user: you can type message here... در این پروژه نمونه از کاربران نام کاربری یا نام نمی پرسیم.. و صرفا وقتی وارد محیط گفتگو می شوند... یا زمانی که به سرور متصل می شوند منتظر هستیم تا انها پیامی را بنویسند... هر پیامی را که بنویسند به سرور ارسال می شود و سرور وظیفه دارد تا آنرا برای تمام کاربران بفرستد. و این روند درون یک حلقه بی نهایت تکرار می شوند. پس این ارتباط دو طرفه خواهد بود و هم کاربران برای سرور اطلاعات ارسال می کنند و هم سرور برای کاربران اطلاعات ارسال خواهد کرد. در نظر داشته باشید که کاربر اول می تواند پیامی را بنویسد و به کاربران دیگر ارسال شود. ممکن است کاربر سومی اصلا تصمیمی به نوشتن پیام نداشته باشد و صرفا تمایل به خواندن پیام دیگران داشته باشند. و این کاملا اختیاری است. و ما کاربران را اجباری نمیکنیم. اگرچه شما می توانید با خلاقیت خودتان اینها را با متغییر های کمکی و دستورات شرطی پیاده کنید. کد ها برای پیام ها یک ساختار در نظر میگیریم و بصورت مشترک در هر دو نرم افزار استفاده خواهیم کرد... بنابراین اینرا در هدر پیاده خواهیم کرد. هدر پیام : (message.hpp) #ifndef message_HPP #define message_HPP #include <cstdio> #include <cstdlib> #include <cstring> using namespace std; class message { public: enum { headerLength = 4 }; enum { maxBodyLength = 512 }; message() : bodyLength_(0) { } const char* data() const { return data_; } char* data() { return data_; } size_t length() const { return headerLength + bodyLength_; } const char* body() const { return data_ + headerLength; } char* body() { return data_ + headerLength; } size_t bodyLength() const { return bodyLength_; } void bodyLength(size_t new_length) { bodyLength_ = new_length; if(bodyLength_ > maxBodyLength) bodyLength_ = maxBodyLength; } bool decodeHeader() { char header[headerLength + 1] = ""; strncat(header, data_, headerLength); bodyLength_ = atoi(header); if(bodyLength_ > maxBodyLength) { bodyLength_ = 0; return false; } return true; } void encodeHeader() { char header[headerLength + 1] = ""; sprintf(header, "%4d", static_cast<int>(bodyLength_)); memcpy(data_, header, headerLength); } private: char data_[headerLength + maxBodyLength]; size_t bodyLength_; }; #endif نرم افزار اصلی و سرور : (server.cpp) #include <iostream> #include <cstdlib> #include <deque> #include <memory> #include <list> #include <set> #include <utility> #include <boost/asio.hpp> #include "message.hpp" using boost::asio::ip::tcp; using namespace std; typedef deque<message> messageQueue; class participant { public: virtual ~participant() {} virtual void deliver(const message& messageItem) = 0; }; typedef shared_ptr<participant> participantPointer; class room { public: void join(participantPointer participant) { participants.insert(participant); for(auto messageItem: messageRecents) participant->deliver(messageItem); } void deliver(const message& messageItem) { messageRecents.push_back(messageItem); while(messageRecents.size() > max) messageRecents.pop_front(); for(auto participant: participants) participant->deliver(messageItem); } void leave(participantPointer participant) { participants.erase(participant); } private: messageQueue messageRecents; enum { max = 200 }; set<participantPointer> participants; }; class session : public participant, public enable_shared_from_this<session> { public: session(tcp::socket socket, room& room) : socket(move(socket)), room_(room) { } void start() { room_.join(shared_from_this()); readHeader(); } void deliver(const message& messageItem) { bool write_in_progress = !Messages.empty(); Messages.push_back(messageItem); if(!write_in_progress) { write(); } } private: void readHeader() { auto self(shared_from_this()); boost::asio::async_read(socket, boost::asio::buffer(messageItem.data(), message::headerLength), [this, self](boost::system::error_code ec, size_t) { if(!ec && messageItem.decodeHeader()) { readBody(); } else { room_.leave(shared_from_this()); } }); } void readBody() { auto self(shared_from_this()); boost::asio::async_read(socket, boost::asio::buffer(messageItem.body(), messageItem.bodyLength()), [this, self](boost::system::error_code ec, size_t) { if(!ec) { room_.deliver(messageItem); readHeader(); } else { room_.leave(shared_from_this()); } }); } void write() { auto self(shared_from_this()); boost::asio::async_write(socket, boost::asio::buffer(Messages.front().data(), Messages.front().length()), [this, self](boost::system::error_code ec, size_t) { if(!ec) { Messages.pop_front(); if(!Messages.empty()) { write(); } } else { room_.leave(shared_from_this()); } }); } tcp::socket socket; room& room_; message messageItem; messageQueue Messages; }; class server { public: server(boost::asio::io_context& io_context, const tcp::endpoint& endpoint) : acceptor(io_context, endpoint) { do_accept(); } private: void do_accept() { acceptor.async_accept([this](boost::system::error_code ec, tcp::socket socket) { if(!ec) { make_shared<session>(move(socket), room_)->start(); } do_accept(); }); } tcp::acceptor acceptor; room room_; }; int main(int argc, char* argv[]) { try { if(argc < 2) { cerr << "Usage: server <port> [<port> ...]\n"; return 1; } boost::asio::io_context io_context; list<server> servers; for(int i = 1; i < argc; ++i) { tcp::endpoint endpoint(tcp::v4(), atoi(argv[i])); servers.emplace_back(io_context, endpoint); } io_context.run(); } catch (exception& e) { cerr << "Exception: " << e.what() << "\n"; } return 0; } نرم افزار دوم و سمت کاربر : (client.cpp) #include <iostream> #include <thread> #include <cstdlib> #include <deque> #include <boost/asio.hpp> #include "message.hpp" using boost::asio::ip::tcp; using namespace std; typedef deque<message> messageQueue; class client { public: client(boost::asio::io_context& context, const tcp::resolver::results_type& endpoints) : context(context), socket(context) { connect(endpoints); } void write(const message& messageItem) { boost::asio::post(context, [this, messageItem]() { bool write_in_progress = !writeMessage.empty(); writeMessage.push_back(messageItem); if(!write_in_progress) { write(); } }); } void close() { boost::asio::post(context, [this]() { socket.close(); }); } private: void connect(const tcp::resolver::results_type& endpoints) { boost::asio::async_connect(socket, endpoints, [this](boost::system::error_code ec, tcp::endpoint) { if(!ec) { readHeader(); } }); } void readHeader() { boost::asio::async_read(socket, boost::asio::buffer(readMessage.data(), message::headerLength), [this](boost::system::error_code ec, size_t) { if(!ec && readMessage.decodeHeader()) { readBody(); } else { socket.close(); } }); } void readBody() { boost::asio::async_read(socket, boost::asio::buffer(readMessage.body(), readMessage.bodyLength()), [this](boost::system::error_code ec, size_t) { if(!ec) { cout.write(readMessage.body(), readMessage.bodyLength()); cout << "\n"; readHeader(); } else { socket.close(); } }); } void write() { boost::asio::async_write(socket, boost::asio::buffer(writeMessage.front().data(), writeMessage.front().length()), [this](boost::system::error_code ec, size_t) { if(!ec) { writeMessage.pop_front(); if(!writeMessage.empty()) { write(); } } else { socket.close(); } }); } boost::asio::io_context& context; tcp::socket socket; message readMessage; messageQueue writeMessage; }; int main(int argc, char* argv[]) { try { if(argc != 3) { cerr << "Usage: client <host> <port>\n"; return 1; } boost::asio::io_context context; tcp::resolver resolver(context); auto endpoints = resolver.resolve(argv[1], argv[2]); client c(context, endpoints); thread t([&context](){ context.run(); }); char line[message::maxBodyLength + 1]; while(cin.getline(line, message::maxBodyLength + 1)) { message messageItem; messageItem.bodyLength(strlen(line)); memcpy(messageItem.body(), line, messageItem.bodyLength()); messageItem.encodeHeader(); c.write(messageItem); } c.close(); t.join(); } catch (exception& e) { cerr << "Exception: " << e.what() << "\n"; } return 0; } این پروژه آزمایشی بصورت رایگان و اوپن سورس در اینترنت بخصوص اینجا وجود دارد و می توانید آنرا مستقیما بصورت کامل دانلود کنید. با تشکر, Max Base / مکس بیس
  3. 1 امتیاز
    خب ! Build System چیست ؟ تمام برنامه‌هایی که می‌نویسیم، معمولاً یک main.c دارند که نقطهٔ‌شروع (start point) برنامهٔ‌ما هست. آیا همیشه همین یک فایله ؟ آیا همیشه نیازه که به یک‌صورت برنامه‌ را کامپایل کنیم ؟ خب مسلماً جواب "نه" هست. چرا که ممکنه برنامهٔ شما دارای ده‌ها فایل داشته‌باشه، و نیاز داشته‌باشید که هر فایل رو به صورت‌خاصی با فلگ‌های خاصی کامپایل‌کنید. اینجاس که "بیلد سیستم‌"ها وارد کار میشوند. به احتمال زیاد نمونه‌های زیادی مشاهده کردید که وقتی یک سورسی‌را (source) از مخازن آنلاین گیت، مثل گیت‌هاب یا گیت‌لب دریافت می‌کنید در فایل‌ راهنما (README.md) در بخش Build نوشته که وارد دایرکتوری بشید و دستور make و بعد make install را وارد کنید، دقیقاً کاری که می‌کنید اینکه برنامهٔ GNU Make را صدا می‌زنید که فایل تنظیمات رو از دایرکتوری جاری بخواند و دستورات تعیین شده رو انجام بده، این دستورات در فایلی به نام Makefile‌ نوشته میشود. نصب کردن GNU Make این برنامه معمولاً روی تمام سیستم‌عامل‌های معقول مثل GNU/Linux یا اقوام BSD نصب هست، درصورتی‌که نبود می‌توانید با استفاده از مدیربسته‌ٔ سیستم‌عاملتون اقدام به نصب کنید، مثلاً برای نصب روی سیستم‌عامل Debian - Ubuntu - Ubuntu Mint می‌توانید به این‌صورت عمل کنید : $> apt install make چه کنیم با GNU Make ؟ اوّل از همه باید یک برنامه‌ای داشته‌باشیم که بخوایم براش Build System تعیین کنیم و دستورات Makefileش رو بنویسیم. یک نمونهٔ ساده کد چند تکه‌ای را می‌توانید از این‌قسمت دریافت کنید. ما سه فایل arg.c/arg.h و main.c را به این‌صورت داریم (یک ساختار معقول) : . ├── build ├── obj └── src ├── arg.c ├── arg.h └── main.c خب حالا ما باید Makefile خودمان را داخل دایرکتوری ریشه درست کنیم، قبلاً هم گفتم : "برنامهٔ GNU Make به دنبال فایلی به اسم Makefile یا GNUmakefile یا makefile می‌گرده". در Makefile می‌توانیم‌ما قوانین (rule) برای ساخته شدن چیزی و متغیر‌هایی تعریف کنیم. اینجا من توضیحات خلاصه‌ای را می‌گویم، باقی‌ماندهٔ مطالب را باید از مستندات‌رسمی GNU Make یا راهنمای سریع دنبال کنید. هر قوانین‌ای که تعریف می‌کنیم دارای این ساختار هست : نیازها : هدف‌ها دستورات مثلاً ما می‌خواهیم که برنامهٔ‌کامپایل شدهٔ‌مان، با اسم args در دایرکتوری build/ قرار بگیره. اینجا "هدف"ما میشه build/args و نیازما هم فایل‌های کامپایل‌ شدهٔ arg.c و main.c هست. اوه ! یک هدف دیگه‌هم پیدا شد؛ الآن هدف دوّم‌ما فایل‌های کامپایل شدهٔ obj/arg.o و obj/main.o هست و نیازمان هم سورس‌های این فایل‌ها یعنی src/arg.h و src/arg.c و src/main.c. خب خیلی زیاد شدن، بهتره که از آخر شروع کنیم و نیازهایمان را برطرف کنیم، اوّلین نیاز فایل‌های کامپایل‌شده هستن : obj/main.o obj/arg.o : src/main.c src/arg.c src/arg.h gcc -c -o obj/main.o src/main.c gcc -c -o obj/arg.o src/arg.o * نکته : سعی نکنید دستورات Makefile را از منطقهٔ کد کپی نکنید، کمی تلاش کنید و بنویسید. خب قبول دارم خیلی زیاد و زشت شد، بیاید این قانون (rule) را به دو تیکه قسمت کنیم : obj/arg.o : src/arg.c src/arg.h gcc -c -o obj/arg.o src/arg.c obj/main.o : src/main.c gcc -c -o obj/main.o src/main.c اگر تا انتها متن ادامه بدید حتماً کوتاه‌ترم خواهد شد :). خب؛ object fileها یا همان فایل‌های کامپایل شده‌‌یمان را به دست‌آوردیم. حالا باید قانون (rule) نیاز اوّلمان را بنویسیم، چه چیزی نیاز داشتیم ‌؟ فایل کامپایل شدهٔ build/args که نیاز به object fileها داشت، حالا object fileها را داریم و باید نیاز هدفمان را برطرف کنیم : build/args : obj/main.o obj/arg.o gcc -o build/args obj/main.o obj/arg.o obj/arg.o : src/arg.c src/arg.h gcc -c -o obj/arg.o src/arg.c obj/main.o : src/main.c gcc -c -o obj/main.o src/main.c تمام شد. ما دستورات Build System خودمان را به زبان برنامهٔ GNU Make نوشتیم؛ حالا کافیه که فقط وارد دایرکتوری‌ای که فایل Makefile هست بشیم و از ترمینال برنامهٔ make را فراخوانی کنیم : $> make gcc -c -o obj/main.o src/main.c gcc -c -o obj/arg.o src/arg.c gcc -o build/args obj/main.o obj/arg.o حالا می‌توانیم برنامهٔ خودمان را اجرا کنیم : $> build/args -name Ghasem -family Ramezani Input Name is [Ghasem] Input Family is [Ramezani] دقّت کرده باشید ما توی نوشتن Makefileمان نیازمندی‌هارو یکی بالاتر از دیگری نوشتیم. چرا ؟ به خاطر اینکه GNU Make میاد از اوّل فایل شروع می‌کنه و قوانین (rules)ها را اجرا می‌کنه. بزارید با یک مثال نشان بدم. Makefile زیر را مدنظرتون داشته‌باشید : obj/arg.o : src/arg.c src/arg.h gcc -c -o obj/arg.o src/arg.c obj/main.o : src/main.c gcc -c -o obj/main.o src/main.c build/args : obj/main.o obj/arg.o gcc -o build/args obj/main.o obj/arg.o ما نیاز اصلی خودمان را آخرین قانون (rule) نوشتیم. حالا برنامهٔ make را اجرا می‌کنیم تا رفتارَش را بهتر متوجه بشیم : $> make gcc -c -o obj/arg.o src/arg.c دیدید ؟ خیلی ساده برخورد کرد، اوّلین قانون (rule) را نگاه کرد تنها نیازمندیش فایل‌های src/arg.c و src/arg.v بودن که وابسته به چیزی نبودند و هدفشان را تأمین کردند. اگر بخواهیم باقی قوانین (rules) را فراخوانی کنیم، باید صراحتاً مشخص کنیم : $> make obj/main.o gcc -c -o obj/main.o src/main.c $> make build/args gcc -o build/args obj/main.o obj/arg.o خب دیگه امیدوارم دلیل اینکه‌ما نیازمندی اصلیه خودمان را اوّلین قانون (rule) قرار دادیم را متوجه شده باشید. وقتی make به نیازمندیه obj/arg.o و obj/main.o برای تأمین build/args برمی‌خوره ادامهٔ قوانین را پیمایش می‌کنه تا نیازمندی‌ها را برطرف کنه. (اگر گیج شدید احتمالاً، پیشنهاد می‌کنم همین‌ موارد را روی کاغذ کشیده و قسمت : نیازمندی‌ها و هدف‌ها و دستورات هر قانون را مشخص کنید.) می‌توانیم قوانینی (rules) تعریف کنیم برای کارهای خاصی، مثلاً همان make install، یعنی قانون install را فراخوانی کن؛ حالا ما قانون clean را برای حذف کردن فایل‌های کامپایل‌شده می‌نویسیم : clean : yes | rm -vf build/* obj/* البته باید در اینجا نکته‌ای را هم حواسمان باشد، باید به GNU Make بگوییم که قانون clean ، یک قانون الکی‌هست، و با یک "هدف" اشتباه نشود. به این‌صورت قانون را ویرایش می‌کنیم : .PHONY : clean clean : yes | rm -vf build/* obj/* نگرانی‌ای هم دربارهٔ Wildcard ها نداشته‌باشید، GNU Make دستتون را باز گذاشته :). متغیرها در GNU Make مسلماً هرجا سخنی از متغیر‌است، سر و کلهٔ راحتی‌کار (و تا حدودی پیچیدگی) پیدا می‌شود. ما می‌توانیم متغیرهم داخل Makefile خودمان داشته‌باشیم. مثلاً فرض کنید که نیاز دارید تمام سورس‌کدها با کامپایل clang و سطح‌بهینه‌سازیه 3 کامپایل بشند. نیازی نیست‌که هربار اینارو تایپ کنیم. کافیه براشون متغیرتعریف کنیم : CC = clang OP = -O3 OBJECT = obj/main.o obj/arg.o ARGS = src/arg.c src/arg.h build/args : $(OBJECT) $(CC) $(OP) -o build/args $(OBJECT) obj/arg.o : $(ARGS) $(CC) $(OP) -c -o obj/arg.o src/arg.c obj/main.o : src/main.c $(CC) $(OP) -c -o obj/main.o src/main.c clean : yes | rm -vf build/* obj/* متغیرهای به خصوصی نیز در GNU Make تعریف شده‌اند که می‌توانند کار مارا بسیار راحت‌تر کنند،‌ برای مثال می‌توانیم قانون object file‌ها را به اینصورت بازنویسی کنیم : obj/%.o : src/%.c $(CC) $(OP) -c -o $@ $? برای اطلاعات بیشتر به راهنمای‌سریع GNU Make مراجعه کنید. یادداشت‌ها یا Code Comments برای استفاده از قابلیت Comment گذاری در کد، کافیه که اوّل خط خودتون از کاراکتر # استفاده کنید. خب دوستان، سعی کردم کلیّات مبحث را بگم؛ ابزار Make قابلیت‌های بسیار زیادی داره که حتماً باید خودتون مطالعه کنید. مثلاً خواستید Makefile شما یک Makefile دیگه را صدا بزنه، یا حتیٰ دستورات شرطی اجرا بکند و یا از همه مهم‌تر بر اساس معماری پلتفرم شما عملیات کامپایل را انجام بده و ... . - موفق‌وپیروز باشید. ?
  4. 1 امتیاز
    فایل‌ها/تغییرات پروژه را چطوری کنترل کنیم ؟ در وهلهٔ اوّل شاید بگید چه نیازیه ؟ خب برنامه رو می‌نویسیم و میریم دیگه !. درسته برنامه‌اتون را می‌نویسید و می‌روید؛ امّا به کجا چنین شتابان ؟ آیا همیشه برنامهٔ شما کوچک‌خواهد بود ؟ آیا قراره برنامهٔ شما در صد خط تمام بشه ؟ یا اینکه کلاً قصد توسعه‌اش رو دیگه ندارید ؟ خب شاید یکی دیگه داشت :). فرض کنید برنامهٔ‌تان را نوشتید : void parsing(int argc, char **argv){ top = 0; for (unsigned i=1; i < (unsigned)argc; i+=2){ listArgs[top].name = argv[i]; listArgs[top].value = argv[i+1]; top++; } } خب، برنامه‌کار می‌کنه و میرید و یک هفته‌ٔ دیگه میاید و مثلاً خط : top = 0; را حذف می‌کنید. و برنامه در اجرای اوّل درست کار می‌کنه؛ پیش‌خودتون می‌گید خب چه نیازی بود، الکی ماهم کد نوشتیم :). امّا بعداً در اجراهای متوالی برنامه شروع می‌کنه به دادن خروجی‌های نامتعارف. اینجاس که باید ساعت‌ها وقت بزارید و بگردید ببینید آخرین‌بار چه چیزی رو تغییر دادید و کدوم فایل را ویرایش کردید. کار مسخره‌ و اعصاب‌خورد کنی میشه، درسته ؟. امّا برای مدیریت این دَنگٌ‌وفَنگ‌ها می‌تونید از سیستم‌های‌مدیریتپروژه‌ استفاده بکنید. مثل Git حالا اینکه چرا گیت ؟ به خاطر اینکه راحت‌ترینه و بهترینه. چرا ؟ چون امتحانش را پس داده، پروژهٔ بزرگ "کرنل‌لینوکس" را داره مدیریت می‌کنه. حالا بیاید ببینیم اگه ما ازت گیت (git) استفاده می‌کردیم، چطوری می‌توانستیم بفهمیم که چه بلایی سر کد آمده : ۱- اوّل گزارشات را چک می‌کنم، تا ببینم آخرین گزارشی که از تغییرات ذخیره کردم چه بوده ؟: $> git log commit bb513a5f9ec429222de03afa690e7fa5d2fbdf6e (HEAD -> master) Author: Ghasem Ramezani <g1999ramezani@gmail.com> Date: Sun May 5 00:05:22 2019 +0430 create a bug commit ab176fa8a282a74e6badfc285c0986bc66ee6b7d (origin/master, origin/HEAD) Author: Ghasem Ramezani <g1999ramezani@gmail.com> Date: Sat May 4 10:40:32 2019 +0430 make `top` to be 0 at first of parsing() function and make class storage of listArgs to be `extern` and getOption() function return "NULL" on Failure. خب فهمیدم که آخرین تغییرم با عنوان create a bug ثبت شده، حالا باید از شناسه‌اش استفاده کنم. ۲- تغییراتی که در آن گزارش ثبت شده است را مشاهده می‌کنم. : $> git show bb513a5f9ec429222de03afa690e7fa5d2fbdf6e commit bb513a5f9ec429222de03afa690e7fa5d2fbdf6e (HEAD -> master) Author: Ghasem Ramezani <g1999ramezani@gmail.com> Date: Sun May 5 00:05:22 2019 +0430 create a bug diff --git a/source/arg.c b/source/arg.c index c776ff2..a75c91d 100644 --- a/source/arg.c +++ b/source/arg.c @@ -7,7 +7,6 @@ unsigned top=0; struct ARGS listArgs[MAX_ARG]; void parsing(int argc, char **argv){ - top = 0; for (unsigned i=1; i < (unsigned)argc; i+=2){ listArgs[top].name = argv[i]; listArgs[top].value = argv[i+1]; دیدی به چه سادگی توانستیم تغییری که دادیم را پیدا کنیم ؟ البته این انتهای ماجرا نیست ! الآن که متوجه شدیم در کدام گزارش‌ما خراب‌کاری کردیم؛ کافیه که تغییرات را به گزارش قبل از خراب‌کاری برگردانیم : $> git reset --hard ab176fa8a282a74e6badfc285c0986bc66ee6b7d البته قابل ذکره که ما اینجا تنها داخل این گزارش فقط یک تغییر داشتیم، مسلماً کار می‌تونه کمی پیچیده‌تر بشه اگه تغییرات زیاد باشن، که همیشه هستن ?. چگونه با گیت (git) کار کنیم ؟ بسیار ساده، مسلماً اوّل نیاز دارید که این برنامه را نصب کنید. این برنامه به طور پیش‌فرض در سیستم‌عاملتون نصب نیست. کافیه که از مدیربستهٔ سیستم‌عاملتون کمک بگیرید، مثلاً برای Debian - Ubuntu - Ubuntu Mint به این‌صورت کار تمام می‌شود : $ apt install git حالا بعد از نصب، نیاز دارید که مشخصاتتان را ثبت کنید، دقت کنید که تمام توضیحاتی که بنده می‌دهم را می‌توانید به‌صورت کامل‌تر از سایت گیت (git) دنبال کنید. $> git config --global user.name "Ghasem Ramezani" $> git config --global user.email "g1999ramezani@gmail.com" $> git config --global core.editor emacs دو مورد اوّل که واضح هستن، امّا مورد آخر دل‌بخواه خودتان هست، زمانی‌که نیاز باشه گیت (git) ویرایشگرمتنی را جهت ویرایش‌باز بکند باید بداند که کدام ویرایشگر مورد علاقهٔ شماست. می‌توانید هر برنامه‌ای را قرار بدهید. امّا دقت کنید که بهترین ویرایشگر‌ها می‌توانند Vim, Emacs, Notepad++ باشند؛ فایل این تنظیمات را می‌توانید از این مسیرها دنبال کنید : User Space : ~/.gitconfig System Wide: /etc/gitconfig ساخت مخازن (repository) خب حالا که نصب/پیکربندی انجام شد، کافیه که مخزن (repository) خودمان را راه‌اندازی کنیم. یک پروژهٔ جدید درست کنید و گیت (git) را مقداردهی (Initialize) کنید : $> mkdir project ; cd project $> git init ما یک دایرکتوری به اسم project درست کردیم، و مخزن (repository) خودمان را با دستور git init راه‌اندازی کردیم، یک سری فایل‌هایی گیت (git) برای ما داخل آن دایرکتوری با اسم .git درست کرده. تغییراتی‌که نیاز رو انجام میدیم، مثلاً در وهلهٔ اوّل دایرکتوری‌ها و فایل‌های پروژه را راه‌اندازی می‌کنیم : $> mkdir header source build object $> touch header/arg.h source/arg.c Makefile $> tree . ├── build ├── Makefile ├── header │ └── arg.c ├── object └── source └── arg.h 4 directories, 3 files $> اگه درمورد Makefile نمی‌دانید، می‌توانید از اینجا با GNU Make و Makefile آشنا بشید. الآن بد نیست که خروجی دستور git status را ببینیم تا توضیحاتی در این‌باره بدیم (این دستور، وضعیت‌جاری مخزنمان را نشان می‌دهد) : $> git status On branch master No commits yet Untracked files: (use "git add <file>..." to include in what will be committed) Makefile header/ source/ nothing added to commit but untracked files present (use "git add" to track) عکس زیر را مشاهده‌کنید تا توضیح‌بهتری بدم : فایل‌های شما داخل گیت (git) دارای حالات‌های مختلفی‌هستن، به طورکلّی یا شناخته‌شدن‌اند (tracked) یا ناشناخته‌اند (untracked)؛ فایل‌ها/دایرکتوری‌هایی که ما بعد از مقدار‌‌دهی مخزن‌مان ساختیم، در حالت ناشناخته (untracked) هستند. که خود گیت (git) هم همین‌را به ما گفته‌است : Untracked files: (use "git add <file>..." to include in what will be committed) برای اینکه شناخته‌شده (tracked) بشند، باید آنها را به صحنه (stage) ببریم. برای اینکار خود گیت گفته‌است که باید چه کرد که می‌توانیم به دوصورت انجام دهیم : $> git add Makefile source header $> git add -A خب حالا دوباره خروجی git status را نگاه می‌کنیم : $> git status On branch master No commits yet Changes to be committed: (use "git rm --cached <file>..." to unstage) new file: Makefile new file: header/arg.c new file: source/arg.h الآن فایل‌های ما به stage رفتند، و آمادهٔ این‌هستند که گزارش‌ (commit) بشوند. دقت کنید که Git از خِیر دایرکتوری‌های خالی می‌گذرد. حالا کافیه‌که ما تغییراتی که دادیم را گزارش کنیم، که با دستور git commit به دوصورت انجام می‌شود : $> git commit $> git commit -m "My Message" در حالت‌اوّل، گیت ادیتور پیش‌فرضتان را باز می‌کند و از شما می‌خواهد که یک توضیح‌کوتاه درمورد تغییراتی‌که داده‌اید بنویسید، در حالت‌دوّم، شما مستقیم توضیح‌کوتاه خود را وارد می‌کنید. حال دوباره برگردیم و خروجی دستور git status را ببینیم : $> git status On branch master nothing to commit, working tree clean خیلی‌هم عالی، این نشان دهندهٔ این‌است که ماهیچ فایل ناشناخته (َUntracked) یا دستکاری‌شده (Modified) یا درصحنه (Stage) نداریم. هنگامی‌که تغییراتی را در فایل‌های شناخته‌شده (Tracked) بدید، آن فایل از حالت دستکاری‌نشده (Unmodified) به حالت دستکاری‌شده (Modified) درمیاید، که نیاز است شما تغییرات را درصورت‌نیاز وارد صحنه (Stage) کنید و بعد گزارش‌کنید (Commit). حال تغییراتی‌اعمال می‌کنیم، و مراحل‌مورد نیاز تا درصحنه (Stage) بردن‌فایل‌ها انجام می‌دهیم : $> git add -A $> git status On branch master Changes to be committed: (use "git reset HEAD <file>..." to unstage) modified: Makefile modified: header/arg.h modified: source/arg.c امّا شاید شما نخواید که مثلاً Makefile گزارش‌ش با مابقیه فایل‌ها یکی باشه، و نیاز دارید که از Stage بیرون بیاریدش؛ دقّت کنید خود Git هم راهنمایی‌ کرده که باید چه‌کار کرد : $> git reset HEAD Makefile $> git status On branch master Changes to be committed: (use "git reset HEAD <file>..." to unstage) modified: header/arg.h modified: source/arg.c Changes not staged for commit: (use "git add <file>..." to update what will be committed) (use "git checkout -- <file>..." to discard changes in working directory) modified: Makefile و حالا می‌توانید به راحتی گزارش فایل‌های خودتان را برای header/arg.h و source/arg.c بنویسید : $> git commit -m "Done With Print() Function" فایل .gitignore بیاید تا make را اجرا کنیم (درصورتی‌که با GNU Make آشنا نیستید، برای آشنایی این‌قسمت را مطالعه کنید) : $> git status On branch master Changes not staged for commit: (use "git add <file>..." to update what will be committed) (use "git checkout -- <file>..." to discard changes in working directory) modified: Makefile Untracked files: (use "git add <file>..." to include in what will be committed) build/ object/ no changes added to commit (use "git add" and/or "git commit -a") اینجا دایرکتوری‌های build و object هم اضافه شدند،امّا ما نیازی نداریم که Git این دایرکتوری‌ها را مدیریت کند، پس کافیه که یک فایل به اسم .gitignore‌ درست کنیم. و فایل‌ها و دایرکتوری‌هایی که نمی‌خواهیم Git آنها را دنبال کند را در آن ذکر کنیم : $> echo -e "/build/*\n/object/*" > .gitignore $> cat .gitignore /build/* /object/ $> git status On branch master Changes not staged for commit: (use "git add <file>..." to update what will be committed) (use "git checkout -- <file>..." to discard changes in working directory) modified: Makefile Untracked files: (use "git add <file>..." to include in what will be committed) .gitignore no changes added to commit (use "git add" and/or "git commit -a") و مشاهده می‌کنید که دیگر Git اخطاری برای دایرکتوری‌های build‌ و object نداد. خب دوستان،امیدوارم دلیل اهمیّت Git و کلاً برنامه‌های کنترل‌ورژن را درک‌کرده باشید؛ امّا شرمنده، دنیای Git بزرگ‌تر از آنچه هست که من بخوام خلاصه‌ای از هر قسمت را در یک پست باز‌گو کنم؛ شدیداً پیشنهاد می‌کنم که این‌کتاب را برای فراگیری هرچه بهتر Git‌ بخوانید. - موفق و پیروز باشید. ?
این صفحه از پرچمداران بر اساس منطقه زمانی تهران/GMT+03:30 می باشد
×
×
  • جدید...