رفتن به مطلب
جامعهٔ برنامه‌نویسان ایران

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'اهمیت'.



تنظیمات بیشتر جستجو

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


وبلاگ‌ها

چیزی برای نمایش وجود ندارد

چیزی برای نمایش وجود ندارد

تالارهای گفتگو

  • انجمن‌های آی او استریم
    • اخبار و اعلامیه‌های سایت
    • اسناد و قوانین مرجع
    • پادکست‌های آموزشی
    • معرفی محصولات نوشته شده‌ بومی
    • مرکز نظرسنجی جامعه‌ی برنامه‌نویسان
    • مقالات و اسناد مشاوره‌ای
    • مرکز چالش برانگیز برنامه‌نویسان
    • رمز‌های موفقیت
    • ابزار‌ها و نرم‌افزارهای کاربردی برنامه‌نویسان حرفه‌ای
  • استارتاپی و کسب‌و‌کار
    • استارتاپ‌ها
    • سرمایه گذاری
    • شتاب دهنده‌ها
    • پارک‌های علم و فناوری و مراکز رشد
    • مصاحبه با استارت‌آپ‌ها
    • قوانین حقوقی
    • داستان‌های موفقیت
    • کارآفرینان و متخصصین
    • مشاوره اجرای کسب‌وکار
    • اخبار حوزه‌ی استارتا‌پی
    • آگهی‌های استخدامی
  • زبان‌های برنامه نویسی
    • برنامه نویسی در C و ‏++C
    • برنامه نویسی با Java
    • برنامه نویسی با JavaScript
    • برنامه نویسی با Go
    • برنامه نویسی با Python
    • برنامه نویسی با Delphi
    • برنامه نویسی با Ruby
    • برنامه نویسی با VB6
  • ابزار‌های ساخت و ساز
    • ابزار CMake
    • ابزار QMake
    • ابزار Qbs
    • ابزار Make و Autotools
  • طراحی و توسعه وب
  • طراحی و توسعه وب اپلیکیشن‌ها
    • طراحی و توسعه در Angular
    • طراحی و توسعه در React.JS
    • طراحی و توسعه در Vue.JS
  • طراحی و توسعه موبایل و اِمبِد‌ها و تلوزیون‌ها
    • برنامه نویسی تحت محصولات اپل
    • برنامه نویسی تحت محصولات گوگل
    • طراحی و توسعه تحت محصولات دیگر
  • برنامه‌نویسی سطح پایین و سیستم عامل‌ها
    • سیستم عامل‌های آزاد
    • سیستم عامل‌های تجاری
    • مباحث آموزشی مرتبط با سیستم‌عامل
  • شبکه و اینترنت
  • بانک‌های اطلاعاتی
  • برنامه نویسی تحت محصولات اپل
  • برنامه نویسی تحت محصولات مایکروسافت
  • طراحی و توسعه تجربه کاربری (UX) و رابط کاربری (UI)
  • درخواست انجام پروژه (ویژه)
  • سوالات و مباحث عامیانه
  • سطل آشغال

Product Groups

  • کتاب‌ها و مقالات آموزشی

دسته ها

  • علمی
  • استارتاپی
  • برنامه‌نویسی
    • زبان‌های برنامه نویسی
    • معماری‌ها
  • کامپایلر و مفسر
  • محیط‌های توسعه
  • طراحی و توسعه‌ی وب
  • مجوز‌های نرم‌افزاری
  • فناوری‌ها
    • پردازش تصویر
    • اینترنت اشیاء
    • پردازش ابری (Cloud Computing)
    • چند سکویی (Cross-Platform)
    • بیگ دیتا (Big Data)
    • هوش مصنوعی (AI)
    • سخت افزار
    • نرم‌افزار و اپلیکیشن
    • اینترنت و شبکه
    • رمزنگاری
    • امبد‌ها (Embedded)
  • طراحی
    • تجربه کاربری
    • رابط کاربری

دسته ها

  • عمومی
  • گرافیکی
  • شبکه و ارتباطات

دسته ها

  • کامپایلر‌ها
  • محیط‌های توسعه
  • کتابخانه‌ها
  • ماژول‌ها و پلاگین‌ها
  • محصولات بومی
  • کتاب‌ها و مقالات
  • زبان‌ها و ابزار‌ها
  • طراحی و گرافیک

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


درباره من


شماره تلفن همراه


شناسه گیت‌هاب


شناسه لینکدین


شناسه پیام رسان


شهر


آدرس پستی

2 نتیجه پیدا شد

  1. پادکستِ مربوط به اهمیت شکست و تجربه زمان مورد نیاز : ۳ دقیقه و ۸ ثانیه. Podcast-02.mp3
  2. کامبیز اسدزاده

    اهمیت یادگیری ماشین

    یادگیری ماشین یک استراتژی برای تحقیق و بررسی به صورت خودکار جهت ساختن مُدل‌های توصیفی (نمایشی) می‌باشد. یادگیری ماشین چیست؟ چرا یادگیری ماشین مهم است؟ یادگیری ماشین یک استراتژی برای تحقیق و بررسی اطلاعات است که ساخت مُدل به صورت توصیفی را خودکار می‌کند. یک شاخه که از استدلال‌هایِ انسانی از نگاه ساختار‌ها است می‌تواند از اطلاعات به دست آید، نمونه‌ها را تشخیص دهد و با اختیار بی‌نظیر انسانی بین انتخاب‌ها اقدام به انتخاب کند. چرا یادگیری ماشین ضروری است؟ اشتیاق برای یادگیری ماشین به دلیل حجم توسعه و مجموعه‌ای از اطلاعاتی که قابل دسترس هستند طرفدار بسیاری دارد. همه‌ی کسانی که به دنبال پردازش محاسباتی ارزان هستند و معمولاً برای ذخیره سازی اطلاعات شتاب‌زده عمل می‌کنند، یادگیری ماشین را مهم می‌دانند. بنابراین این امکان وجود دارد که سریعاً و به طور طبیعی مُدل‌هایی در این زمینه ایجاد شود که بتواند اطلاعات بسیار بزرگ و پیچیده‌ی (سرگیجه‌آور) و دقیق‌تری را در اختیار شما قرار دهند که منجرع به ارائه‌ نتایج سریع و دقیق خواهشد شد، حتی در مقیاس بسیار بزرگ که شاید انتظارش را نداشته باشید. علاوه بر این، با ساخت مدل‌های دقیق، ویژگی برتری شکل می‌گیرند که امکان شناخت احتمالات مفید و یا نگه‌داری فاصله‌ی استراتژیکی از خطرات مبهم را فراهم می‌سازد. چه کسانی این فناوری را مورد استفاده قرار می‌دهند؟ اکثر شرکت‌هایی که با اطلاعات زیادی سرو کار دارند، نوآوری یادگیری ماشین را تخمین زده و آن را درک می‌کنند. آن‌ها با جمع‌آوری بیت‌های دانش از این اطلاعات استفاده کرده و اغلب به تدرج می‌توانند به صورت کارآمد‌تر (مفید‌تر) کار کرده و یا موقعیت‌های مطلوب را نسبت به رقبای خود انتخاب کنند. ادارات و بودجه بانک‌ها و سازمان‌های مختلف در صنایع مربوط به پول از نوآوریِ یادگیری ماشین برای دو هدف کلیدی استفاده می‌کنند: برای تشخیص تجربیاتِ بحرانی در اطلاعات و جلوگیری از اخاذی. بیت‌هایِ دانش می‌تواند فرصت‌های سرمایه‌گذاری را شناسایی کرده و یا به متخصصانِ مالی زمانی که می‌خواهند معامله کنند کمک کند. دولت اداره‌های دولتی، برای مثال، تامین امنیت به صورت امنیت باز و کاربردپذیری آن‌ها نیاز به یادگیری ماشین دارند، چرا که آن‌ها منابع فراوانی از اطلاعات را دارا هستند که می‌تواند به عنوان سر نقطه‌ای از دانش‌ باشد. به عنوان نمونه، روشی را برای افزایش مهارت و صرفه‌جویی در پولِ نقد را متمایز می‌کند. همچنین یادگیری ماشین می‌تواند در محدود سازی و ارائه‌ی اطلاعات نادرست کمک کند. خدمات انسانی یادگیری ماشین یک طرحِ (الگویِ) توسعه سریع در صنعت خدمات انسانی است که به عنوان یک ویژگی در قالب گجت‌های پوشدنی و سنسور‌هایی که می‌توانند اطلاعات قابل استفاده برای ارزیابی یک بیماری تصاعدی (در حال پیشرفت) را ارائه دهد مورد استفاده قرار می‌گیرد. همچنین این نوآوری می‌تواند در تجزیه کردن اطلاعات پیش‌رونده در قادر ساختن متخصصین برای تشخیص الگو‌های مناسب برای مقابله با خطراتی که ممکن است سریعاً نتیجه داده و درمان آن به آن‌ها کمک کند استفاده می‌شود. نمایشگاه‌ها و معاملات سایت‌ها چیز‌هایی را که ممکن است با توجه به خرید‌هایی که شما در گذشته داشته‌اید پیشنهاد دهند. آن‌ها می‌دانند که چگونه تاریخچه‌ی خرید شما را تجزیه و تحلیل کنند. این ظرفیت برای گرفتن اطلاعات، تجزیه آن‌ها و استفاده از آن‌ها برای سفارشی کردن یک پس زمینه‌ی خرید (و یا تحقق بخشیدن به ارائه‌ی تبلیغات) می‌باشد. نفت و گاز یافتن منابع جدید حیاتی؛ تجزیه‌ی مواد معدنی در زمین؛ پیش‌بینی‌های ناامیدانه‌ی سنسور یک پالایشگاه؛ بهینه سازی تولید و انتشار نفت برای تولید و آگاهی بیشتر، کمیتِ استفاده از یادگیری ماشین برای این صنایع بسیار بزرگ است و هنوز هم در حال گسترش می‌باشد. حمل و نقل تجزیه اطلاعات برای تمایز نمونه‌ها و الگو‌ها برای کسب‌و‌کار‌های حمل‌و‌نقل حیاتی است، که بستگی به دوره‌های تولیدی و پیش‌بینی مسائل بالقوه برای افزایش بهره‌وری دارد. بازرس اطلاعات و نمایش بخش‌هایی از یادگیری ماشین ابزار‌های ضروری برای حمل‌و‌نقل سازمان‌ها، حمل‌و‌نقل آزاد و دیگر انجمن‌های حمل‌و‌نقل می‌باشد.
×
×
  • جدید...